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The prevalence of autism, a neurodevelopmental condition resulting from genetic and environmental
causes, has increased dramatically during the last decade. Among the potential environmental factors,
hyperserotonemia during pregnancy and its effect on brain development could be playing a role in this
prevalence raise. In the rodent model developed by Whitaker-Azmitia and colleagues, hyperserotonemia
during fetal development results in a dysfunction of the hypothalamo-pituitary axis, affecting the amyg-
dala as well as pro-social hormone oxytocin regulation.

Dysfunction of the amygdala and abnormal oxytocin levels may underlie many clinical features of ASD.

Selective serotonin reuptake inhibitors (SSRI) are the most widely used class of antidepressants drugs,
and they are not contraindicated during pregnancy. In this paper, we hypothesize that increased seroton-
emia during pregnancy, including due to SSRI intake, could be one of the causes of the raising prevalence
in autism. If our hypothesis is confirmed, it will not only shed light on one of the possible reason for aut-

ism prevalence, but also offer new preventive and treatment options.

© 2009 Elsevier Ltd. All rights reserved.

Introduction

Autism spectrum disorder (ASD) is a behaviorally defined neu-
rodevelopmental disorder affecting as many as 1 in 150 children
prevention [1], or even 1:91 according to the latest report of Na-
tional Survey of Children’s Health [2]. Its defining features include
mild to severe impairments in communication and reciprocal so-
cial interaction, as well as repetitive and stereotyped behaviors.

Reports of autism prevalence have increased dramatically dur-
ing the past decade. This may be partly due to increased awareness
of ASD resulting in more diagnoses being made, but also to envi-
ronmental factors [3,4]. Not much is known yet on the possible ef-
fect of certain drugs, food or environmental conditions on ASD
progression.

DHS model of autism

There is evidence that otr (coding for oxytocin, OT) and avpr
(coding for vasopressin) genes may be abnormal in some ASD indi-
viduals (for review, see [5]). However, decreased levels of OT could
also be the consequence of abnormal levels of serotonin (5HT) dur-
ing brain development.

The developmental hyperserotonemia (DHS) model of autism
was first hypothesized by Patricia Whitaker-Azmitia (reviewed in
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[6]), who based her theory on the observation that high levels of
serotonin is seen in the blood of a third of ASD children.

Hyperserotonemia is indeed the most consistent neurochemical
change in autism [7-11]. Hyperserotonemia is also found in first-
degree relatives [12] and is associated with recurrence risk of aut-
ism within families [13-15].

It is important to keep in mind that in the mature brain, blood
levels of serotonin are not an indicator of brain serotonin, because
(1) serotonin does not cross the mature blood brain barrier (BBB)
and (2) the synthetic enzyme tryptophan hydroxylase is different
in the brain and in the periphery [16]. However, the immature
BBB allows the passage of 5HT and in infants, the BBB becomes
impermeable to serotonin at only 2 years of age.

The DHS model states that at early stages of development, when
the BBB is not fully formed, high levels of maternal blood serotonin
could enter the brain of the developing fetus and cause loss of 5SHT
terminals through negative feedback (Fig. 1).

Developmental hyperserotonemia was mimicked in the rat
from gestational day 12 to postnatal day 20 [6]. Changes were ob-
served: (1) in columnar development in cortex (also seen in hu-
mans with ASD [17]), (2) in 5HT receptors and (3) in the
behavior of rats, that exhibited ‘autistic-like’ traits. In addition,
changes were found (4) in the amygdala, with an increase of CGRP
(also seen in ASD [18]), and (5) in the paraventricular nucleus of
the hypothalamus (PVN), with as a consequence decreased OT lev-
els (also seen in ASD [19,20]). Both changes in the amygdala and
the PVN could result from loss of 5HT innervation. Recently more
evidence has been produced supporting the DHS model, showing
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that pups, similarly to ASD children, exhibit increased tendency to
seizures, are less social, and show fewer olfactory-based social
interactions [21].

In the human brain, serotoninergic neurons appear at five
weeks of gestation [22]. Serotonin fibers grow continuously prena-
tally, and brain serotonin levels increase until a peak is reached at
about 2 years of age, after which they decline until adult levels are
reached, which represent 50% of the peak values (reviewed in [6]).

Serotonin exerts a negative feedback on the development of
serotonin neurons, mediated by 5SHT1A receptors [23]. Serotonin
terminals innervate both the central nucleus of the amygdala and
the paraventricular nucleus of the hypothalamus, and the release
of CGRP and OT is mediated by 5HT1a and 5HT2 receptors [24].

Increased serotonin during pregnancy

In humans, increased levels of serotonin during pregnancy
could have several distinct etiologies, including increased internal
release, increased intake and decreased metabolism. As mentioned
above, it is known that first-degree relative hyperserotonemia in-
creases the risk of autism [13-15].

Drugs that release 5HT, such as cocaine, have been shown to
dramatically increase the prevalence of autism, with 11.4% of chil-
dren exposed in utero being affected [25]. However, in the light of
recent prevalence increases, can we think of another substance
that was newly introduced and could be playing a role?

SSRIs and autism - is there a link?

Prozac was introduced in the USA in 1987. SSRIs are the third
most prescribed antidepressant [26], with over 22.2 million pre-
scriptions in the US in 2007. SSRIs are not contraindicated during
pregnancy, and as high as 2.3% of mothers report using SSRIs from
one month before to 3 months after conception [27-29].

Several studies have examined the teratogenic effects of SSRIs
[30,31], and some have concluded to an association with slightly
increased risks of cardiac abnormalities. Those studies examined
the potential effects of SSRI exposure in utero on the presence of
fetal malformation, and the effect of withdrawal syndrome after
birth. However, they did not address the long-term effect of SSRI
exposure on cognition and, to our knowledge, no study has so far
explored the presence of a correlation between SSRIs intake and
autism prevalence. SSRIs remain the treatment of choice of depres-
sion during pregnancy.

Borue et al. [32], recently reviewed the possible effects of SSRIs
on cognitive development in rodents, and have shown that admin-
istration of SSRIs during a key developmental window creates
changes in brain circuitry and maladaptive behaviors that persist
into adulthood, including increased anxiety, aggression and
depression.

Epidemiological data may shed some light on a putative con-
nection between SSRIs and autism. In 2007, Utah was the state
with the highest rate of depression in the USA [33], and Utah is
number one in prescription for depression. In 2009, a study pub-
lished by the US Center for Disease Control and Prevention re-
vealed that Utah has the third highest rate among 14 states
examined, with prevalence rates 12% higher than national aver-
ages, and that increased twentyfold in 20 years. While no causality
can be drawn from these epidemiological observations, and while
we are lacking specific data on the prevalence of SSRI intake by
pregnant women in Utah, the coincidence of highest SSRI intake
and top ten autism rates in the same state, given what we have
learned from the rodent model, certainly warrants further
investigation.

Other factors can be suspected, including high tryptophan con-
taining food intake. Tryptophan is present in dietary supplements,
but also in many different foods like soybeans, turkey and
chocolate.

Evidence supporting the DHS model of autism

In line with the DHS model, decreased levels/activity of seroto-
nin have been described in ASD brains: PET studies have revealed
decreased activity of radiolabeled serotonin in the frontal cortex
and thalamus [34] and decreased serotonin synthesis [35] in autis-
tic children, and a recent SPECT study has shown lowered seroto-
nin binding potential in several brain areas in Asperger
individuals, including the superior temporal cortex [36].

In addition, it is known that drugs that increase serotonin avail-
ability in the brain can be therapeutically helpful in ASD [37], and
that tryptophan depletion worsens autistic symptomatology [38].
Tryptophan depletion has also recently been shown to disrupt
emotion processing in healthy controls [39].

Noteworthily, both thalidomide and valproic acid exposure,
commonly used in animal models of autism, produce hyperseroto-
nemia [40] and alter serotoninergic neurons [41].

Effects of hyperserotonemia on oxytocin

Oxytocin (OT) is a nanopeptide produced in the magnocellular
neurosecretory cells in the supraoptic nucleus and the paraventric-
ular nucleus (PVN) of the hypothalamus. It is released into the
blood from the posterior lobe of the hypophysis, as well as directly
from the perikarya, dendrites or axon collaterals of magnocellular
neurons. OT fibers have endings in a variety of different brain
areas, including the thalamus, the hippocampus, the amygdala,
the pineal gland and the cerebellum [42].

OT is involved in many aspects of mammalian social behavior,
including social recognition and anxiety [43]. OT KO mice have re-
duced social recognition, and central OT administration into the
amygdala restores social cognition [44]. Rodents with abnormal
OT have been proposed as potential animal models for autism
[45-47].

In the DHS model, a loss of OT-containing cells in the hypothal-
amus as well as a loss of OT projections towards the amygdala is
associated with an abnormal social behavior [6].

In humans, OT regulates social interactions, social cognition, so-
cial behavior and fear [5,48-51]. In particular, in healthy controls
OT increases gaze to the eye region of the face [52], and attenuates
amygdala response to emotional faces regardless of valence [53].
Intranasal administration of OT specifically improves recognition
memory for faces, but not for non-social stimuli in healthy humans
[54]. Studies done in ASD children have shown decreased plas-
matic OT [19,20].

Effects of hyperserotonemia on the amygdala

The amygdala plays an important role in the perception of emo-
tion, and there are indications from several neuropathology, lesion
and neuroimaging studies that it plays a role in the social cognition
deficits in autism. Altered connections between the amygdala and
other components of the emotional processing network could lead
to an aberrant emotional response. Several anatomical studies
have found abnormalities in the amygdala of autistic subjects,
although their results do not allow any conclusion regarding an in-
crease or a decrease of amygdala volume in autism [55-61]. Cell
packing density has been described as abnormal [55]. In addition,
a number of functional studies have reported abnormal amygdala
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Fig. 1. Developmental hyperserotonemia model of autism [6]. Panel A: during gestation, the blood brain barrier is still permeable to 5HT. An increase in the maternal blood of
5HT could be caused by several factors: Cocaine [25]; constitutive high HT level [12]; food-related 5HT intake, SSRIs intake [32]. Increased maternal plasma 5HT results in
increased 5HT in the fetal brain. Panel B: Increased 5HT in the fetal brain provokes a loss of 5SHT terminals through a negative feedback mechanism. Panel C: As a consequence,
in the developed brain we can observe an abnormal cortical columnar architecture, decreased oxytocin production from the hypothalamus, and increased production of

calcitonin-gene related peptide (CGRP) in the amygdala.

activation (e.g. [62,63] and some have proposed that the amygdala
may play a pivotal role in autism [64].

Calcitonin-gene related peptide (CGRP) projections to the
amygdala are involved in conditioned response to acoustic and
somatosensory stimuli and play a role in fear conditioning [65],
and an increase in CGRP increases fear responding (Fig. 1).

Significance

The dramatic rise in autism prevalence may not only be due to
an increased awareness and broader definition, but also to some
factors in the environment. Among these factors, an elevated level
of serotonin during pregnancy could play an adverse role in brain
development. Elevated serotonin could be caused by intake of
drugs elevating serotonin levels, and by the consumption of foods
rich in serotonin. If our hypotheses are confirmed, our data would
have consequences not only in our understanding of the patho-
physiology of autism, but also in the development of preventive ac-
tions meant to limit the amount of serotonin intake during
pregnancy. In addition, if further studies are consistent with a dys-
functional oxytocin production in the brain of ASD individuals,
they will open the way for new therapeutical approaches based
on oxytocin administration.
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